Examples concerning generic sets

Piotr Koszmider, piotr.koszmider@gmail.com

I > <
 I >
 I

< ≣ ►

Outline

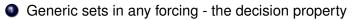
Piotr	Koszmider	()

996

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣.

DQC

<ロト < 回ト < 回ト < 回ト



Generic sets in c.c.c. forcings - catching uncountable sets

< ロト < 同ト < ヨト < ヨト

- Generic sets in any forcing the decision property
- Generic sets in c.c.c. forcings catching uncountable sets
- Generics in the Cohen forcing composing functions with the generic function

< ロト < 同ト < ヨト < ヨト

Piotr k	Koszmider (()
---------	-------------	----

996

(日) (四) (王) (王) (王)

• (P, \leq) partial order (nonatomic) with which we force,

DQC

<ロト < 回ト < 回ト < 回ト

• (P, \leq) partial order (nonatomic) with which we force,

DQC

<ロト < 回ト < 回ト < 回ト

• (P, \leq) partial order (nonatomic) with which we force,for example if A is an atomless Boolean algebra, then $A^* = A \setminus \{0\}$ with the Boolean order

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- 2 The canonical name for the generic set $\dot{G} = \{ \langle \check{p}, p \rangle : p \in P \}$

< ロト < 同ト < ヨト < ヨト

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- 2 The canonical name for the generic set $\dot{G} = \{ \langle \check{p}, p \rangle : p \in P \}$
- The canonical names for the ground model elements $\check{x} = \{ \langle \check{y}, p \rangle : y \in x, p \in P \}.$

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- 2 The canonical name for the generic set $\dot{G} = \{ \langle \check{p}, p \rangle : p \in P \}$
- So The canonical names for the ground model elements $\check{x} = \{ < \check{y}, p >: y \in x, p \in P \}.$

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- 2 The canonical name for the generic set $\dot{G} = \{ \langle \check{p}, p \rangle : p \in P \}$
- So The canonical names for the ground model elements $\check{x} = \{ < \check{y}, p >: y \in x, p \in P \}.$

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- 2 The canonical name for the generic set $\dot{G} = \{ \langle \check{p}, p \rangle : p \in P \}$
- So The canonical names for the ground model elements $\check{x} = \{ < \check{y}, p >: y \in x, p \in P \}.$

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- 2 The canonical name for the generic set $\dot{G} = \{ \langle \check{p}, p \rangle : p \in P \}$
- So The canonical names for the ground model elements $\check{x} = \{ < \check{y}, p >: y \in x, p \in P \}.$
- $If D \subseteq P is dense, then P \Vdash \check{D} \cap \dot{G} \neq \emptyset$

・ 何 ト ・ ヨ ト ・ ヨ ト

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- **2** The canonical name for the generic set $\dot{G} = \{\langle \check{p}, p \rangle : p \in P\}$
- So The canonical names for the ground model elements $\check{x} = \{ < \check{y}, p >: y \in x, p \in P \}.$
- If $D \subseteq P$ is dense, then $P \Vdash \check{D} \cap \dot{G} \neq \emptyset$
- If A is an atomless complete Boolean algebra then
 [φ] = \/{a ∈ A* : a ||−φ}

- (P, ≤) partial order (nonatomic) with which we force, for example if A is an atomless Boolean algebra, then A* = A \ {0} with the Boolean order
- **2** The canonical name for the generic set $\dot{G} = \{\langle \check{p}, p \rangle : p \in P\}$
- So The canonical names for the ground model elements $\check{x} = \{ < \check{y}, p >: y \in x, p \in P \}.$
- If $D \subseteq P$ is dense, then $P \Vdash \check{D} \cap \dot{G} \neq \emptyset$
- If A is an atomless complete Boolean algebra then [φ] = ∨{a ∈ A* : a ⊩φ}
- If we can prove that $P \parallel -\phi$, then we can prove that Con(ZFC) implies Con(ZFC+ ϕ)

イロト 不得 トイヨト イヨト ニヨー

Example 1. The decision property

DQC

<ロト < 回ト < 回ト < 回ト

Example 1. The decision property Motivation:

DQC

<ロト < 回ト < 回ト < 回ト

Example 1. The decision property Motivation:

Theorem

Suppose that A is an atomless Boolean algebra. Then $A^* \models G$ is an ultrafilter in A

< ロト < 同ト < ヨト < ヨト

Example 1. The decision property Motivation:

Theorem

Suppose that A is an atomless Boolean algebra. Then $A^* \Vdash \hat{G}$ is an ultrafilter in A

Proof.

For each $a \in A^*$ consider the dense set in A^*

$$D_a = \{p \in A^* : p \leq a \text{ or } p \leq -a\}$$

Koszmic	

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

(The decision property)

• For each formula ϕ the following set is dense in *P*:

 $\{p \in P : p \parallel \phi \text{ or } p \mid \neg \phi\}$

Koszmic	

Theorem

(The decision property)

• For each formula ϕ the following set is dense in P:

$$\{p \in P : p \parallel -\phi \text{ or } p \parallel -\neg\phi\}$$

Sac

Theorem

(The decision property)

• For each formula ϕ the following set is dense in P:

$$\{p \in P : p \parallel -\phi \text{ or } p \parallel -\neg\phi\}$$

$$[\neg\phi] = -[\phi] \bigcirc P \Vdash [\neg\phi] \in \dot{G} \text{ or } [\phi] \in \dot{G}$$

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

A B > 4

-

< A.

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions

→ Ξ →

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

- P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions
- If *P* is c.c.c and α is a cardinal, then $P \Vdash \check{\alpha}$ is a cardinal, i.e., c.c.c. forcings preserves cardinals and in particular preserve the uncountable

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

- P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions
- If *P* is c.c.c and α is a cardinal, then $P \Vdash \check{\alpha}$ is a cardinal, i.e., c.c.c. forcings preserves cardinals and in particular preserve the uncountable
- i.e., if X is uncountable $P \Vdash \check{X}$ is uncountable

Using forcing and generic ultrafilters get nontrivial countably generated ultrafilters in uncountable Boolean algebras

- P is c.c.c. iff it does not have uncountable family of pairwise incompatible conditions
- If *P* is c.c.c and α is a cardinal, then $P \Vdash \check{\alpha}$ is a cardinal, i.e., c.c.c. forcings preserves cardinals and in particular preserve the uncountable
- **(3)** i.e., if X is uncountable $P \Vdash \check{X}$ is uncountable
- If P is countable, then it is c.c.c.

We say that $B \subseteq A$ is a dense subalgebra of A iff for every $a \in A^*$ there is $b \in B^*$ such that $b \leq a$.

We say that $B \subseteq A$ is a dense subalgebra of A iff for every $a \in A^*$ there is $b \in B^*$ such that $b \leq a$.

Theorem

Let B be a dense subalgebra of A then $B^* \Vdash$ The filter of A generated by G_B is an ultrafilter of A

- 4 ∃ ▶

We say that $B \subseteq A$ is a dense subalgebra of A iff for every $a \in A^*$ there is $b \in B^*$ such that $b \leq a$.

Theorem

Let B be a dense subalgebra of A then $B^* \Vdash$ The filter of A generated by G_B is an ultrafilter of A

Proof.

For each $a \in A^*$ consider the dense set in B^*

$$D_a = \{b \in B^* : b \leq a \text{ or } b \leq -a\}$$

Piotr Koszmider ()		

Definition

Let $B \subseteq A$ be Boolean algebras. We say that B is deep in A if and only if

 $\forall a \in A \quad \forall b \in B \quad \exists c \in B \ c \leq b \cap a \text{ or } c \leq b - a.$

Definition

Let $B \subseteq A$ be Boolean algebras. We say that B is deep in A if and only if

 $\forall a \in A \quad \forall b \in B \quad \exists c \in B \ c \leq b \cap a \text{ or } c \leq b - a.$

Theorem

Suppose that B is a countable deep subalgebra of an algebra A. Then $B^* \parallel A$ has a countably generated ultrafilter.

< ロト < 同ト < ヨト < ヨト

Definition

Let $B \subseteq A$ be Boolean algebras. We say that B is deep in A if and only if

 $\forall a \in A \quad \forall b \in B \quad \exists c \in B \ c \leq b \cap a \text{ or } c \leq b - a.$

Theorem

Suppose that B is a countable deep subalgebra of an algebra A. Then $B^* \parallel A$ has a countably generated ultrafilter.

Theorem

It is consistent with arbitrary big continuum that each $A \subseteq \wp(N)$ of countable independence has an ultrafilter which is countably or ω_1 -generated.

Example 2. Catching uncountable sets

Piotr	Koszmider	()
-------	-----------	----

DQC

< ロト < 回 > < 回 > < 回 > < 回</p>

Example 2. Catching uncountable sets Motivation:

DQC

<ロト < 回ト < 回ト < 回ト

Example 2. Catching uncountable sets Motivation:

Theorem

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

▲御▶ ▲ 国▶ ▲ 国≯

Suppose that *P* satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Suppose that *P* satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Proof.

Plotr	Koszmider	- ()

イロト 不得 トイヨト イヨト 二日

Suppose that *P* satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Proof.

• We may w.l.o.g. assume that $X = \{x_{\alpha} : \alpha < \omega_1\}$

イロト 不得 トイヨト イヨト 二日

Suppose that *P* satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Proof.

• We may w.l.o.g. assume that $X = \{x_{\alpha} : \alpha < \omega_1\}$

2 If the theorem is false, for each *p* there is $q \le p$ and α_q such that $q \models \check{X} \cap \dot{G} \subseteq \{\check{x}_{\alpha} : \alpha < \check{\alpha}_q\} \& \check{X} \cap \dot{G} \not\subseteq \{\check{x}_{\alpha} : \alpha < \check{\beta}\}$ for $\check{\beta} < \check{\alpha}_q$

Suppose that *P* satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Proof.

- We may w.l.o.g. assume that $X = \{x_{\alpha} : \alpha < \omega_1\}$
- 2 If the theorem is false, for each *p* there is $q \le p$ and α_q such that $q \models \check{X} \cap \dot{G} \subseteq \{\check{x}_{\alpha} : \alpha < \check{\alpha}_q\} \& \check{X} \cap \dot{G} \not\subseteq \{\check{x}_{\alpha} : \alpha < \check{\beta}\}$ for $\check{\beta} < \check{\alpha}_q$

Solution There cannot be uncountable many conditions which force pairwise contradictory information, so {α_q : q ∈ P} is countable, so it has its supremum β < ω₁ which satisfies P ||-X̃ ∩ Ġ ⊆ {x_α : α < ǧ}</p>

Suppose that P satisfies c.c.c., and $X \subseteq P$ is uncountable, then there is $p \in P$ such that $p \models \check{X} \cap \dot{G}$ is uncountable

Proof.

- We may w.l.o.g. assume that $X = \{x_{\alpha} : \alpha < \omega_1\}$
- 2 If the theorem is false, for each *p* there is $q \le p$ and α_q such that $q \models \check{X} \cap \dot{G} \subseteq \{\check{x}_{\alpha} : \alpha < \check{\alpha}_q\} \& \check{X} \cap \dot{G} \not\subseteq \{\check{x}_{\alpha} : \alpha < \check{\beta}\}$ for $\check{\beta} < \check{\alpha}_q$
- Solution There cannot be uncountable many conditions which force pairwise contradictory information, so {α_q : q ∈ P} is countable, so it has its supremum β < ω₁ which satisfies P ||-X̃ ∩ G̃ ⊆ {x_α : α < β̃}</p>
- But for each $p \in P$ we have $p \Vdash \check{p} \in G$, so for each $p \in X$ we have $p \Vdash \check{p} \in \check{X} \cap G$, so $p_{\beta+1} \Vdash \check{p}_{\beta+1} \in \check{X} \cap G$, a contradiction.

(CH) There is a $c : [\omega_1]^2 \to \{0, 1\}$ such that for each pairwise disjoint family of k-element sets ($k \in N$) $a_{\xi} = \{\alpha_1^{\xi}, ..., \alpha_k^{\xi}\}$ of ω_1 , for each $M : \{1, ..., k\} \times \{1, ..., k\} \to \{0, 1\}$

 $\exists \xi < \eta < \omega_1 \qquad \forall 1 \le i < j \le k \qquad \mathbf{C}(\alpha_i^{\xi}, \alpha_j^{\eta}) = \mathbf{M}(i, j).$

We say that a_{ξ} and a_{η} realize matrix M and that c realizes every matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト …

(CH) There is a $c : [\omega_1]^2 \to \{0, 1\}$ such that for each pairwise disjoint family of k-element sets ($k \in N$) $a_{\xi} = \{\alpha_1^{\xi}, ..., \alpha_k^{\xi}\}$ of ω_1 , for each $M : \{1, ..., k\} \times \{1, ..., k\} \to \{0, 1\}$

 $\exists \xi < \eta < \omega_1 \qquad \forall 1 \le i < j \le k \qquad \mathbf{C}(\alpha_i^{\xi}, \alpha_j^{\eta}) = \mathbf{M}(i, j).$

We say that a_{ξ} and a_{η} realize matrix M and that c realizes every matrix.

Theorem

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_{\xi} : \xi < \omega_1\}$ such that a_{ξ} and a_{η} realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_{\xi} : \xi < \omega_1\}$ such that a_{ξ} and a_{η} realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_{\xi} : \xi < \omega_1\}$ such that a_{ξ} and a_{η} realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

Proof.

• Fix $c : [\omega_1]^2 \to \{0, 1\}$, Suppose *c* realizes every matrix.

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_{\xi} : \xi < \omega_1\}$ such that a_{ξ} and a_{η} realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

- Fix $c : [\omega_1]^2 \to \{0, 1\}$, Suppose *c* realizes every matrix.
- Pix a k × k matrix M₀. Construct a forcing P consisting of all pairwise disjoint finite families p of k-element sets such that if a, b ∈ p and a < b, then a and b realize M₀.

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_{\xi} : \xi < \omega_1\}$ such that a_{ξ} and a_{η} realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

- Fix $c : [\omega_1]^2 \to \{0, 1\}$, Suppose *c* realizes every matrix.
- Pix a k × k matrix M₀. Construct a forcing P consisting of all pairwise disjoint finite families p of k-element sets such that if a, b ∈ p and a < b, then a and b realize M₀.
- The assumption that c realizes every matrix implies that P is c.c.c.

Suppose that $c : [\omega_1]^2 \to \{0, 1\}$ realizes every matrix. Then, for each $k \times k$ matrix M_0 there is a c.c.c. forcing P which forces that there is an uncountable pairwise disjoint family $\{a_{\xi} : \xi < \omega_1\}$ such that a_{ξ} and a_{η} realize matrix M_0 for every $\xi < \eta < \omega_1$. In paricular, c does not realize every matrix.

- Fix $c : [\omega_1]^2 \to \{0, 1\}$, Suppose *c* realizes every matrix.
- Pix a k × k matrix M₀. Construct a forcing P consisting of all pairwise disjoint finite families p of k-element sets such that if a, b ∈ p and a < b, then a and b realize M₀.
- The assumption that *c* realizes every matrix implies that *P* is c.c.c.

(MA+ \neg CH) For each $c : [\omega_1]^2 \rightarrow \{0,1\}$ there is $k \in N$ (arbitary big) and there is pairwise disjoint family of k-element sets $a_{\xi} = \{\alpha_1^{\xi}, ..., \alpha_k^{\xi}\}$ of ω_1 , and there is $M : \{1, ..., k\} \times \{1, ..., k\} \rightarrow \{0, 1\}$ such that

$$\forall \xi < \eta < \omega_1 \qquad \exists 1 \le i < j \le k \qquad \boldsymbol{c}(\alpha_i^{\xi}, \alpha_i^{\eta}) \neq \boldsymbol{M}(i, j).$$

i.e., no c realizes every matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 3. Composing functions with the generic function

DQC

Example 3. Composing functions with the generic function Motivation:

Sac

<ロト < 回ト < 回ト < 回ト

Example 3. Composing functions with the generic function Motivation:

Let *P* consists of all functions $p : \{1, ..., n\} \rightarrow \omega$ with the inverse inclusion (i.e., the Cohen forcing). Let $c : \omega \rightarrow \omega$ be the generic function i.e, $\dot{c} = \bigcup \{p : p \in \dot{G}\}$.

Example 3. Composing functions with the generic function Motivation:

Let *P* consists of all functions $p : \{1, ..., n\} \rightarrow \omega$ with the inverse inclusion (i.e., the Cohen forcing). Let $c : \omega \rightarrow \omega$ be the generic function i.e, $\dot{c} = \bigcup \{p : p \in \dot{G}\}$.

Use *c* to get the consistency of the existence of the Souslin tree i.e., an uncountable tree without uncountable branches and without uncountable antichains

Definition

Let $e_{\alpha} : \alpha \to \omega$ for $\alpha < \omega_1$ be bijections. We say that $(e_{\alpha})_{\alpha < \omega_1}$ is coherent iff

$$\forall \alpha < \beta < \omega_1 \quad \{\xi < \alpha : \boldsymbol{e}_{\alpha}(\xi) \neq \boldsymbol{e}_{\beta}(\xi)\}$$
 is finite.

DQC

Definition

Let $e_{\alpha} : \alpha \to \omega$ for $\alpha < \omega_1$ be bijections. We say that $(e_{\alpha})_{\alpha < \omega_1}$ is coherent iff

$$\forall \alpha < \beta < \omega_1 \quad \{\xi < \alpha : \boldsymbol{e}_{\alpha}(\xi) \neq \boldsymbol{e}_{\beta}(\xi)\}$$
 is finite.

Theorem

$$T((e_{\alpha})_{\alpha < \omega_{1}}) = \{f : \alpha \in \omega_{1}, \ f : \alpha \to \omega \ \{\xi < \alpha : f(\xi) \neq e_{\alpha}(\xi)\} \text{ is finite}\}$$

with inclusion forms an Aronszajn tree, i.e., without an uncountable branch.

Definition

Let $e_{\alpha} : \alpha \to \omega$ for $\alpha < \omega_1$ be bijections. We say that $(e_{\alpha})_{\alpha < \omega_1}$ is coherent iff

$$\forall \alpha < \beta < \omega_1 \quad \{\xi < \alpha : \boldsymbol{e}_{\alpha}(\xi) \neq \boldsymbol{e}_{\beta}(\xi)\}$$
 is finite.

Theorem

$$T((e_{\alpha})_{\alpha < \omega_{1}}) = \{f : \alpha \in \omega_{1}, \ f : \alpha \to \omega \ \{\xi < \alpha : f(\xi) \neq e_{\alpha}(\xi)\} \text{ is finite}\}$$

with inclusion forms an Aronszajn tree, i.e., without an uncountable branch.

Let *P* consists of all functions $p : \{1, ..., n\} \rightarrow \omega$ with the inverse inclusion (i.e., the Cohen forcing). Let $c : \omega \rightarrow \omega$ be the generic function i.e, $\dot{c} = \bigcup \{p : p \in \dot{G}\}$. We will look

$$T((\boldsymbol{c} \circ \boldsymbol{e}_{\alpha})_{\alpha < \omega_1}).$$

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

• Suppose $P \Vdash (\dot{c} \circ \dot{f}_{\alpha})_{\alpha < \omega_1}$ is an uncountable antichain in T

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

- Suppose $P \Vdash (\dot{c} \circ \dot{f}_{\alpha})_{\alpha < \omega_1}$ is an uncountable antichain in T
- 2 Take p_{α} and $f_{\alpha} \in T((e_{\alpha})_{\alpha < \omega_1})$ such that $p_{\alpha} \parallel \check{f}_{\alpha} = \dot{f}_{\alpha}$,

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

- Suppose $P \Vdash (\dot{c} \circ \dot{f}_{\alpha})_{\alpha < \omega_1}$ is an uncountable antichain in T
- 2 Take p_{α} and $f_{\alpha} \in T((e_{\alpha})_{\alpha < \omega_1})$ such that $p_{\alpha} \models \dot{f}_{\alpha} = \dot{f}_{\alpha}$,
- Since *P* is countable may w.l.o.g. assume that $p_{\alpha} = p : \{1, ..., n\} \rightarrow \omega$ for all $\alpha < \omega_1$.

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

- Suppose $P \Vdash (\dot{c} \circ \dot{f}_{\alpha})_{\alpha < \omega_1}$ is an uncountable antichain in T
- 2 Take p_{α} and $f_{\alpha} \in T((e_{\alpha})_{\alpha < \omega_1})$ such that $p_{\alpha} \Vdash \check{f}_{\alpha} = \dot{f}_{\alpha}$,
- Since *P* is countable may w.l.o.g. assume that $p_{\alpha} = p : \{1, ..., n\} \rightarrow \omega$ for all $\alpha < \omega_1$.
- **3** Take $F_{\alpha} = f_{\alpha}^{-1}[\{1, ..., n\}] \subseteq \omega_1$, and assume the F_{α} s for a Δ -system with root Δ and that all f_{α} 's agree on Δ .

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

- Suppose $P \Vdash (\dot{c} \circ \dot{f}_{\alpha})_{\alpha < \omega_1}$ is an uncountable antichain in T
- 2 Take p_{α} and $f_{\alpha} \in T((e_{\alpha})_{\alpha < \omega_1})$ such that $p_{\alpha} \Vdash \check{f}_{\alpha} = \dot{f}_{\alpha}$,
- Since *P* is countable may w.l.o.g. assume that $p_{\alpha} = p : \{1, ..., n\} \rightarrow \omega$ for all $\alpha < \omega_1$.
- **3** Take $F_{\alpha} = f_{\alpha}^{-1}[\{1, ..., n\}] \subseteq \omega_1$, and assume the F_{α} s for a Δ -system with root Δ and that all f_{α} 's agree on Δ .
- **(**) Choose any f_{α} and f_{β} and find $m \in \omega$ such that $m \ge n$ and

 $\{\xi: f_{\alpha}(\xi) \neq f_{\beta}(\xi)\} \subseteq f_{\alpha}^{-1}[\{1,...,m\}], f_{\beta}^{-1}[\{1,...,m\}].$

P forces that $T = T((\dot{c} \circ \check{e}_{\alpha})_{\alpha < \omega_1})$ is a Souslin tree, i.e., it has no uncountable antichains nor uncountable branches.

Proof.

- Suppose $P \Vdash (\dot{c} \circ \dot{f}_{\alpha})_{\alpha < \omega_1}$ is an uncountable antichain in T
- 2 Take p_{α} and $f_{\alpha} \in T((e_{\alpha})_{\alpha < \omega_1})$ such that $p_{\alpha} \parallel \check{f}_{\alpha} = \dot{f}_{\alpha}$,
- Since *P* is countable may w.l.o.g. assume that $p_{\alpha} = p : \{1, ..., n\} \rightarrow \omega$ for all $\alpha < \omega_1$.
- **3** Take $F_{\alpha} = f_{\alpha}^{-1}[\{1, ..., n\}] \subseteq \omega_1$, and assume the F_{α} s for a Δ -system with root Δ and that all f_{α} 's agree on Δ .
- Solution 6 Choose any f_{α} and f_{β} and find $m \in \omega$ such that $m \ge n$ and

$$\{\xi: f_{\alpha}(\xi) \neq f_{\beta}(\xi)\} \subseteq f_{\alpha}^{-1}[\{1,...,m\}], f_{\beta}^{-1}[\{1,...,m\}].$$

• Put $q = p \cup 0 | [n + 1, m]$. Because $q \parallel \check{q} \in G$, we have $q \parallel \check{q} \subseteq \dot{c}$, and so q forces that $c \circ \dot{f}_{\alpha}$ and $c \circ \dot{f}_{\beta}$ are compatible.

Piotr Koszmider ()